\qquad

C.U.SHAH UNIVERSITY

WADHWAN CITY
University (Winter) Examination -2013
Subject Name: -Computer Algorithm \& Complexity Theory Mark:70
Course Name :M.Tech(CE) Sem-I
Duration :- 2:30 Hours
Date : 10/01/2014

Instructions:-

(1) Attempt all Questions of both sections in same answer book / Supplementary.
(2) Use of Programmable calculator \& any other electronic instrument is prohibited.
(3) Instructions written on main answer Book are strictly to be obeyed.
(4)Draw neat diagrams \& figures (If necessary) at right places.
(5) Assume suitable \& Perfect data if needed.

SECTION-I

Q-1 Attempt following Questions.

a) Define Algorithm and list out its properties. 2
b) What is relation? Explain types of relation. 2
c) Write an algorithm for insertion sort. 2
d) Suppose computers were infinitely fast and computer memory was free. Would you 1 have any reason to study algorithms?

Q-2 a) Explain: Worst Case, Best Case \& Average Case Complexity of an algorithm.
b) Solve following recurrences:
i) $\quad \mathrm{T}(\mathrm{n})=\mathrm{T}(\mathrm{n} / 2)+2^{\mathrm{n}}$
ii) $\quad T(n)=16 T(n / 4)+n$!
c) State and prove Master's Theorem for solving recurrence.

Q-2 a) $<4,6,2,3,8,5,11,9,25,19,55,35>$ is a given dataset. Apply Quick sort algorithm and analyze.
b) Solve following recurrence using change variable method.
$T(n)=7 T(n / 2)+3 n^{2}$
c) Analyze Prim's algorithm for finding MST.

Q-3 a) Solve the following Knapsack Problem using Dynamic Method.
$\mathrm{n}=5$, W = 100
Object: 12345
Weight (w): 1020304050
Value (v): 2030664060
b) Differentiate following techniques for problem solving:

Divide and conquer, Greedy approach, Dynamic programming, Backtracking

OR

Q-3 a) Working modulo $\mathrm{q}=13$, how many spurious hits does the Rabin-Karp matcher
encounter in the text $\mathrm{T}=1122335566889922$ when looking for the pattern $\mathrm{P}=22$?
b) For the following matrices find the order of parenthesization for the optimal chain multiplication?
$\mathrm{A}_{1}=15 \mathrm{X} 5$
$\mathrm{A}_{2}=5 \mathrm{X} 10$
$\mathrm{A}_{3}=10 \times 20$
$\mathrm{A}_{4}=20 \mathrm{X} 5$

SECTION-II

Q-4 Attempt following Questions.
a) Explain topological sorting with example. 2
b) Explain Articulation Point. 2
c) What is backtracking? Explain in brief. 2
d) List out applications of graph algorithms. 1
Q-5 a) Explain DFS algorithm with examples. 5
b) Perform the insertion operation on AVL tree for following sequence: 5$50,25,10,5,7,3,30,20,8,15$c) Find any one Longest Common Subsequence of given two strings using Dynamic4
Programming.
S1=abbacdcba
S2=bcdbbcaac
OR
Q-5 a) Explain Four queen's problem using backtracking technique. 5
b) Explain the methods for traversing the trees. 5
c) Explain BFS algorithm with example. 4
Q-6 a) What is polynomial reducible problem? Explain with example how problem A can be 7polynomial reduced to problem B.b) Explain properties of binomial heap. Also describethe union of two binomial heaps7 with example.
\square
0
0
Q-6 a) Explain P, NP, NP-Complete and NP-Hard problems giving examples. 7
b) Show the results of inserting the keys in to an empty B-tree. 7$<7,15,3,16,5,1,18,9,35,28,39,17,14,20,22,25,27>$ assume order 5.

